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Two-timing, variational principles and waves 

By G. B. WHITHAM 
California Institute of Technology 

(Received 10 January 1970) 

In  this paper, it is shown how the author’s general theory of slowly varying wave 
trains may be derived as the first term in a formal perturbation expansion. In  its 
most effective form, the perturbation procedure is applied directly to the govern- 
ing variational principle and an averaged variational principle is established 
directly. This novel use of a perturbation method may have value outside the 
class of wave problems considered here. Various useful manipulations of the 
average Lagrangian are shown to be similar to the transformations leading to 
Hamilton’s equations in mechanics. The methods developed here for waves may 
also be used on the older problems of adiabatic invariants in mechanics, and they 
provide a different treatment; the typical problem of central orbits is included in 
the examples. 

1. Introduction 
The purpose of this paper is to show how the variational theory for slowly 

varying non-linear wave trains (Whitham 1965a, b, 1967a, 6 )  may be formally 
justified as the first term in a consistent perturbation expansion. The theory 
referred to uses an ‘averaged’ variational principle, and the derivation of the 
equations governing the slow variations of a nearly periodic wave train is then 
surprisingly general and simple. The averaging procedure is intuitively correct, 
but it is not immediately clear how the averaged variational principle would 
appear as the first term of a detailed expansion. Luke (1  966) has shown how the 
final results can be justified in such a scheme, but he works with the Euler 
equations rather than directly on the variational principle. This has the dis- 
advantages that the simplicity and conciseness of the variational technique are 
lost and the formal justification no longer follows the intuitive derivation. It 
does, however, justify the results and has its own points of interest; it can be 
extended to dissipative systems, for example, where a variational principle may 
not be known. 

It has now been seen how to apply the ‘two-timing ’ approach used by Luke 
directly on the variational principle. This is the main topic of the paper. A second 
topic concerns some subtleties in the actual use of the variational principle. 
Various equivalent forms of the averaged variational principle can be intro- 
duced, and one of them has enormous advantages over the others. In  specific 
problems, the optimum one can usually be found without too much difficulty. 
However, there are subtleties involved which were not clearly recognized in the 



374 a. B. Whitham 

original versions. These are now explained, and general procedures are given for 
finding the preferred form. 

The original theory is reviewed briefly in the next section, and the perturbation 
schemes are then taken up in $4 3 to 6. The questions regarding manipulations of 
the form of the averaged variational principle are discussed in Q 7, with illustrative 
examples in 3 8. 

The justification of the averaged variational principle in Q Q  5 and 6 is the result 
of joint discussions with Mr M. E. Delaney. 

It is a great pleasure to contribute to this volume, and in this way acknow- 
ledge a long-standing and continuing debt to Sydney Goldstein. Both as teacher 
and friend, his help and encouragement have always been invaluable. 

2. The averaged variational principle 
In  all problems where the equations admit uniform periodic wave trains as 

solutions it appears to be generally true that the system can be derived from a 
variational principle. The simplest case occurs when there is one dependent 
variable u(x, t )  and the variational principle takes the form 

L(ut, uX, u)dtdx = 0. (1) 

The Euler equation is 

where (3) 

If x is a vector with components xi, the quantities ux and L, are vectors with 
components 

respectively, and the second term in (2) is the divergence 

aulax,, aLpuzi, 

We are concerned with dispersive wave problems in which the equation (2) for 
u has special solutions 

where K, w are constants and where Uo(8) turns out to be a periodic function of 8. 
Then K, w are the wave-number and frequency, respectively. Since (2) is a 
second-order equation in u, there will be two constants of integration. One will 
determine the amplitude, a;  the other will be an arbitrary shift in the phase 0 and 
may be omitted here. The three parameters w, K, a will not be independent, but 
must satisfy a ‘dispersion relation’ 

u = uo(e), e = K i X i - w t ,  

G(w, K, a )  = 0, 

U, = a cos 8, 

(4) 

( 5 )  

if (2) is to be satisfied. In  linear problems 

and the dispersion relation (4) does not involve the amplitude a. 



Two-timing, variational principles and waves 375 

For slowly varying wave trains, it is argued that the form of the solution, 
u = Uo(O, a)  is maintained, but a will not be constant nor will 0 be linear in x 
and t .  The wave-number K and frequency w are generalized by defining them as 

The parameters w, K, a will now be slowly varying functions of x and t 
corresponding to the slow modulation of the wave train. The aim is to derive 
equations for them. 

If the period of the function u = Uo(8, a )  is normalized to Zn, the averaged 
Lagrangian is defined to be 

(7) 

and is calculated by substituting the uniform periodic solution u = Uo(B, a )  in L. 
The dependence on w ,  K comes from introducing ut = - wU& ux = K U ~  into 9; 
the integration with respect to 8 is carried out holding w, K, a constant. The claim 
is, then, that the ‘ averaged ’ variational principle holds and that the equations for 
(w ,  K, a )  follow from 

w = -et, Ki = e xi* (6) 

1 237 
.=ww,K,a) = %Io Lao, 

ss 6 9 ( w ,  K, a)d tdx  = 0. (8) 

The quantities w and K are defined by (6) in terms of the phase function 0, so we 
must derive the consequences of (8) for independent variations 68 and 6a. From 
the variation 6a we have 

and from the variation 66 we have 
(9) 9 ( w ,  K, a )  = 0, 

a a 
-Yw- -YKi = 0. 
at axi 

Equation (9) is a functional relation between (0, K, a) ,  and it can only be the 
dispersion relation (4). One can use (10) as a second-order equation in 8, or work 
with w, K, and supplement (10) by the consistency equations 

derived from (6). The latter course is usually preferable. 
The study of the consequences of (9)-(11), the interpretation of Zw, gKi as 

‘adiabatic invariants ’, the use of these equations to extend the concept of group 
velocity to non-linear problems, the relation of the stability of the periodic wave 
with the type of the equations, as well as extensions of the theory to cases with 
more than one dependent variable and to non-homogeneous media, are all given 
in the previous papers. 

Two special cases will be useful in the present discussion. First, in any linear 
problem, L will be quadratic in u. Hence, when 

uo = a cos e 

9 ( w ,  K, a )  = P(w, K)a2. 

is substituted in (7), 9 must take the form 

(12) 

Quite generally, for linear problems with higher-order derivatives of u or with 
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more dependent variables u, the same argument goes through. The Lagrangian L 
must be quadratic in the variables u, and, as a consequence, 3 must be quadratic 
in a and take the form given in (12). Then the dispersion relation (9) becomes 

Hence, without detailed calculation, the function F(w,K) in (12) must be the 
dispersion function for the problem. We also see in general that the stationary 
value for 2 is zero in linear problems. In simple cases where L is the difference 
between kinetic and potential energy, this proves the well-known result that the 
average kinetic and potential energies are equal. 

It should be noted that the dispersion relation between w and K is not used in 
the course of the calculation of 2. The result in (12) shows clearly that this is 
crucial. If the dispersion relation were used, the class of functions would be too 
restrictive and we would obtain merely the final stationary value 2’ = 0. In 
non-linear problems, this separation of the dispersion relation from the form of the 
periodic solution is more complicated. It is discussed in general in 5 7. 

The second special case is a simple example to illustrate these non-linear effects. 
It is also a useful model to focus the general discussion of the perturbation 
methods. It is a non-linear version of the Klein-Gordon equation, namely 

F(w,.) = 0. ( 1  3) 

Utt-U,,$ V ( u )  = 0. 

L = &A: - gu;- V(u) .  

(W2-K2)U;(@+ V ( U 0 )  = 0) 

The Lagrangian is 

The periodic solution u = Uo(8) satisfies 

which has the integral i ( w 2  - K ~ )  Uha + V(Uo) = A .  (16) 
The constant of integration A can be used as a parameter equivalent to the 
amplitude a. Equation (16) can be solved to  give the function Uo(8) in the inverse 
form 

Since 8 is normalized so that the period is 2n, it follows that 

where f denotes integration over a complete period. This is the dispersion relation 
between w, K and A .  

The averaged Lagrangian is first introduced directly from (14) as 

We then use (16) to obtain a function of w ,  K ,  A in the following way. We have 

= &lo2* ( 0 2  - K2)U;dUO- A 

I 1 
2n 

= - [ 2 ( W 2 - K 2 ) ] 4  [A  - V(U,)]4dUo-A. 
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In  this final form the U, has become merely a dummy variable of integration and 
we have a definite function of w, K,  A .  The symbol 9 ( w ,  K,  A )  is now reserved for 
this final form. The function 9 ( w ,  K, A )  is used in (9) and (10). It is observed 
immediately that the dispersion relation (18) is just LYA = 0, in accordance with 
the general result. 

The important point about the manipulation in (20) is that only the equation 
(16) is used. Although, as noted in (17) and (1 8)) this equation contains the solution 
for V, and the dispersion relation, these are not used explicitly. If they were, it 
would be possible to  restrict the averaged Lagrangian too much to use its varia- 
tion. Then (9) and (10) would not follow. For example, the dispersion relation 
(18) must not be used to eliminate w2 - K~ from (20) altogether. We shall see later, 
in $7, how to describe the manipulation in general terms and how to justify the 
results. 

3. Two-timing on the Euler equations 
The so-called ‘two-timing’ method recognizes explicitly in the expressions 

for the dependent variables that changes are occurring on two time scales: 
the ‘fast’ oscillations of the wave train and the ‘slow’ variations of the para- 
meters (w ,  K, a).  There are two corresponding length scales. The method originated 
in the study of the ordinary differential equations governing the non-linear 
vibrations of mechanical systems, where it was apparently first introduced by 
Krylov and Bogoliubov. It has received considerable development recently 
(see Cole 1968). Luke (1966) adapted it to the partial differential equations of 
wave problems using a basic paper by Kuzmak (1959) as a source. 

The main idea is to express u(x, t )  in the form 

N x ,  t )  = U(8,  x, T, 4, (21) 

where 8 = E-~@(X, T ) ,  X = ex, T = st, (22) 

and the small parameter E measures the ratio of the fast time scale to the slow 
time scale. If the wave-number K and frequency w are introduced, we have 

The scaling has been arranged so that 

(24) 
aw aw a@ aw 
at aT’ axi ax+) 

au au au au au au 
at --@-+‘- ae aT’ Zi a8 axi‘ 

_ -  -‘- -- - ‘- 
with similar expressions for K, and 

(25) _ -  = K i - + € -  

If X, T, w ,  K, U are all taken to be O( 1) quantities, the scaling has been arranged 
so that w ,  K are slowly varying quantities, and so that u has a slow variation in 
addition to its oscillation with the phase 8. 
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The basis of the technique is to use the function U(0,  X, T ,  E )  explicitly as a 
function of all the independent variables 0, X, T even though ultimately the 
extra variable 6' is to be related back to X and T by (22). This extra freedom can 
be used to advantage in obtaining a uniformly valid expansion for u. 

The relevant differential equation in the present case is the Euler equation (2).  
For simplicity in the discussion, the case of one space dimension x is considered; 
the extension is trivial. The first step is to convert the equation (2) into an 
equation forf U(0,  X ,  T). In  doing this, we must use 6' = e-lO(X, T). As in (25), 
t and x derivatives become 

a a  
- 0  -+€- 

a a a a  - = a T - + € -  - _  
at ae a ~ '  ax xae ax' 

To preserve the symmetry between x and t it will be convenient to work with 

y = 0, = - w  

rather than w .  Then, (2) becomes 

a ah, aL, 
-(vL,+KL,)-L3+E-+€- = 0. ae aT ax (27) 

In L,, L,, L,, which are defined in terms of L by (3), the arguments are as shown: 

Li = L,~(uU~+SUT, K U ~ + E U ~ ,  U ) .  (28) 

At thispoint, the relation of 0 to X ,  T may be dropped temporarily, and (27) can be 
considered as an equation for the function U(0,  X ,  T) of the three independent 
variables 8, X ,  T .  Clearly, if this function is found, then U(e-l@, X ,  T )  solves the 
original problem. It should be noted that O ( X ,  T) still appears in (27), through 
v = O,, K = Ox, but the relation of 0 to the argument 6' in U is dropped. 

The solution of (27) is now obtained by expanding U formally in a power series 

00 

u(e, x, T, E )  = c E"U,(6', x, T), 
n=O 

and equating the terms of successive orders in 8 to zero. To lowest order in E ,  only 
U, is involved and we have 

(29) 
a 

- { V p  + KLp) - no,' = 0, ae 

where Lp) = Li(Vuoo, KUOo, uo). (30) 

Since (29), (30) involve only i3 derivatives of U,, this is effectively an ordinary 
differential equation, in fact that of the uniform periodic wave train. In solving it 
an arbitrary 'constant' A will arise which is equivalent to the amplitude a. Of 
course, this ' constant ' must now be allowed to  be a function of ( X ,  T). Just the 
amplitude modulation required ! 

At this lowest order, U, will be determined in its dependence on 8, but will 
involve the three parameters u, K,  A which are all functions of X ,  T .  There is one 

t The dependence of U on the small parameter E will not be shown, whenever it is not a 
point to be emphasized. 
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relation between them at this stage. In  solving for U, and normalizing the period 
in 8 to 27r, the parameters v, K ,  A will be required to satisfy the dispersion relation; 
in this direct attack on the Euler equations there are no subtleties about whether 
the dispersion relation is or is not used. In  the Klein-Gordon example (la), the 
lowest-order equation (29) is just (15). It integrates to (16), nowwithA = A ( X ,  T), 
the dependence of U, on 8 is determined, together with the dispersion relation as in 

Further relations between v, K ,  A are obtained by going to the next order in B. 
The next-order terms in (27) involve U,, U,, v, K.  Only 8 derivatives of U, occur, 
so it is again, effectively, an ordinary differential equation for U,. The solution will 
not be periodic in 8, there will be ‘secular ’ terms linear in 8, unless an appropriate 
condition is enforced on the non-homogeneous terms. For the expansion of U 
to be uniformly valid in 8, the secular terms must be suppressed. We shall call this 
requirement a ‘secular condition’. It is similar to the orthogonality condition 
required of the non-homogeneous terms in certain linear problems of eigenfunc- 
tion expansions. The secular condition gives a further equation for v, K,  A .  

The suppression of secular terms is most easily carried out on conservation 
equations. Indeed the whole two-timing procedure is considerably simplified by 
working with conservation equations, and some of the complication Luke ran into 
is avoided. 

(17)) (18). 

The first step is to write (27) in the equivalent conservation form? 

(31) 
a a a 
ae - { ( V &  + K&) uo - L} + E j j j  (GL1) + E B  (?&LL,) = 0. 

aR ap aQ 
ae aT ax We shall denote this by - + E - + E - = 0 

for ease of discussion. The quantities P, Q, R are functions of U ,  U,, U,, U,, v, K 

and E .  If we now expand U in a power series in E ,  the quantities P, &, R will have 

P = C P%n, etc. 

The lowest terms Po), q0), Ho) depend on U,, v, K ;  the next terms W ,  G1), RCQ 
include also U,. 

corresponding expansions m 

0 

The first two terms of (32) are aRcO) 
(33) -- - 0, ae 

The first one is equivalent to (29) and leads to the immediate first integral 

R(O) ( VLIO) + KL~O)) U,, - L(O) = A (x, T )  . (35) 

(This is (16) for the Klein-Gordon example.) The second equation (34) has to be 
solved for U,, which occurs in B1). A solution uniformly valid in 8 requires U ,  and 

-f A natural derivation of this equation, free of ingenuity. will be noted later in $5. 
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hence each U,, to be periodic in 8 with period 2n. This is only possible in (34) if the 
integral of the right-hand side with respect to 0 over one period is zero. That is, to 
avoid secular terms, we must demand 

From the definitions of P, Q, R (see (31) and (32))) it is 

This is the remaining equation for v, K,  A .  
In this approach, (35) is solved completely for U, and the dispersion relation. 

The results are substituted in (37). The tie-in with the averaged Lagrangian 
raises the more subtle question of just how (35) is to be used in conjunction with 
(37). We may note, however, that the averaged Lagrangian is 

If  derivatives are taken, keeping U, fixed, then (37) can indeed be written 

The form 9 ( v )  K ,  A ) ,  with appropriate careful use of (35) in (38), still gives 

a a 
-9"+ -LqK aT ax = 0, (40) 

even though further dependence on v and K has been introduced into (38) via 
U,. Moreover, the dispersion relation becomes -EA = 0. This preferred form is 
derived in 5 7 after the averaged variational principle has been justified and used 
directly t o  derive the results of this section. 

For the Klein-Gordon example, L is given by (14), so that 

Leo) = &( v2 - K2) u2 - v( u oe 0 )  

and (39) becomes 

On the other hand, from (20), dia is 

[A  - v(Uo)] tdUo-A,  
1 

2n 
3 = - [ 2 (  

and (40) becomes 

.- ~ K rj [ A  - V(UOItdUO} = 0. 

(43) 
The equivalence of these two forms of the secular condition, (41) and (43), is 
easily established for this example from (16). 
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Two-timing on the equations, then, is a satisfactory and consistent way to 
solve the problem. The expressions are kept relatively simple by writing the basic 
equations (27 )  and (31) in terms of the Lagrangian L. However, the full power of 
the variational principle has not been used in the two-timing analysis and the 
final results have not yet been justified in general in their most compact form 
using 9. 

It is interesting to observe that an exact form of the secular condition can be 
derived from (32), valid without approximation for small c, and hence valid for 
all orders. The only argument neededis that R is periodic in 8; therefore, from (32), 

Substituting for P and Q from (31), we have 

The successive terms in the expansion of this for U = &nUn give the required 
secular terms in the successive determinations of the U,. Equation (37) is the 
lowest-order term in the expansion of (45). 

4. Averaging and two-timing a system of conservation equations 
In  a &st attack on slowly varying non-linear waves (Whitham 1965a), the 

equations for (v, K, A ) ,  and similar overall parameters that arise for higher-order 
systems, were obtained by averaging an equivalent system of conservation 
equations. The equivalent system is denoted by 

aP, aQi -+- = 0 (i = 1, ..., m). 
at ax 

The intuitive argument is to use their averaged form 

where the averages are computed from the periodic solution. 
From the two-timing formalism, (46) becomes 

i.e. 

( v $ + c & ) G + ( ~ k + e & ) Q ~  = 0, 

Ri = vpi + K Q ~ .  ae aT ax 
aRi aPi aQ. 
- + e - + c L  = 0 , 

For each of these we then have 

= VP:)+ K&io) = A i ( X ,  T), 

and 
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These correspond to (35) and (36), respectively. The integrals in (49) determine 
the periodic solution with the parameters v, K ,  Ai extended to allow dependence 
on ( X , T ) .  The secular conditions (50) complete the system of equations for 
v, K ,  Ai. This provides the formal justification for the more intuitive averaging in 
(47). Again it is observed from (48) that 

is an exact secular condition. 
The method was superseded by the more concise variational approach. This 

method based on conservation equations is only general if one can be sure that 
the requisite number of conservation equations (46) always exist. On specific 
problems, it was always found to be the case, and the experience was sufficiently 
varied to form the belief that this would always be the case. A direct proof can 
probably be found, but it is not an easy question. The next section which obtains 
the equations for v, K,  Ai without this step implies an indirect verification. 

5. Two-timing the variational principle 

space dimension x. The extensions will then be straightforward. 
Most of the discussion will be given for a single function u as in (l), and for one 

When u is written in the form (21), (22), the Euler equation becomes 

with hi = Lj(Vt&+Su., K U o + E U X ,  u), (52) 

as noted in (27) and (28). It is surprising that this is just the Euler equation of the 
three-variable variational principle 

for the three-variable function U(B, X ,  T ) .  In  (53) the function U andits variations 
are taken to be periodic in 8, and the variations in U vanish on the boundary of 
thc ( X ,  T) region. It is even more surprising that (53) is already the averaged 
variational principle and it is exact ! What started out as an intuitive argument for 
the first term of an approximate expansion is not only justified but turns out to 
contain the whole expansion. There is in fact no assumption that s is small; the 
only step was to express u(x, t )  in the form (21), (22). 

The exact averaged Lagrangian is defined by 

(54) 

(55 )  6 LdTdX=O. JJ  and (53) may be written 
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Variation of U in (53) gives the whole equation (51). But the simplicity of the 
arguments in $ 2  depends on obtaining the equations for the slowly varying 
parameters by varying those parameters in the average variational principle. 
Accordingly, we consider variations of (53) with respect to the function O(X, T ) ,  
which appears in (53) through v = a,, K = 0,. We have, first, 

Jl{Ev6@T+L,60,}dXdT = 0, 

using (54) for the inner integrals with respect to 8. By the usual variational 
argument we deduce 

(56)  
a -  a -  

-LL,+-LL,=0, 
aT ax 

for arbitrary 60 which vanish on the boundary of the ( X ,  T) region. This is just 
the secular condition (45), and it is also exact ! 

We are now free to use (53) for independent variations of U(0,  X ,  T )  and 
O ( X ,  T) to obtain both the equations for U and the secular conditions. 

To lowest order, we have 

The variation with respect to U, gives 

a 
ae -(vLio) +KL&O))- Lie) = 0 

(using the notation of (30)) and the variation with respect to 0 gives 

These are the results (29) and (39) of $ 3  obtained very simply. Essentially this 
justifies the theory of $2;  it remains to discuss the various forms of the averaged 
Lagrangian. This is completed in 0 7, after further amplification of the theory thus 
far. 

The conservation equation (31)) and its lowest approximation used in ob- 
taining the integral (35), follow naturally from (53) and (57). In  each case the 
variable 8 does not appear explicitly in L. Therefore, the variational principle is 
invariant if an arbitrary constant is added to 8. Noether's theorem proves that 
there is a conservation equation corresponding to this invariance; it is 

With the arguments of L given in (53) it is easily seen that (31) follows. The 
arguments in (57) give the lowest-order approximation (35). We no longer need 
(31) for the derivation of the secular condition, but (35) is useful in connexion 
with (58 ) .  

Extension to more variables 

The result extends to a system with dependent variables ui(x, t )  (i = 1, . . ., m), and 
with more space dimensions. If the system can be derived from the variational 
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principle quit ,  ui,, u,)axat = 0, 

the Euler equations are 

a a 
-L.  $-L,,-L,, = 0 (i = 1, ...) m) 
at 21 ax 

where L ~ ,  = aLpuit, L ~ ,  = aL/aUix, L~~ = aL/au,. 

U,(X,  t )  = q(e ,  x, TI, e = €-1o(x, TI, 
After two-timing all the u’s in the form 

the Euler equations become 

where the arguments of the Lil, .Liz, Li3 are 

These are the Euler equations for 

In  applications of these methods to such higher-order systems, it was noted in 
earlier papers that some of the u, appear only through their derivatives in (61). 
Typically, such u, are potentials, whose derivatives are physical quantities. Let 
one of these be denoted by 4. In  the uniform periodic wave train, for maximum 
generality qi must be expressed as 

$ = px+yt+a(e) ,  8 = K X + V t ,  (63) 

where B(8) is periodic and p, y are arbitrary constants. The derivatives of $, 
which are the physical quantities, are then periodic functions of 8. The pair 
(p, y )  behave like (K ,  Y) in the analysis. They have been called pseudo wave- 
numbers and frequencies, since they give the increments in 4 over one period or 
wavelength, just as ( K ,  v) give the increments of 8. 

In  the slowly varying wave train, (63) is generalized to 

(64) 1 9 = 4+ @(8, x, TI7 
8 = €-1o(x, TI, II. = e-lY(X, T ) ,  

V = a,, K =  ax, Y = ~ T ,  p = y x .  
The average Lagrangian in (62) now includes dependence on Y(X, T) through 
y = I F T ,  /3 = YP,. The variations with respect to  T give additional secular 
conditions a -  a -  

-L +-L = o ,  
aT y ax 

and these are required to complete the solution to lowest order. The details are 
not given here in general; typical cases can be seen in the previous papers 
(Whitham 1965, 1967) and will be included in the examples of $8. 
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6. Relation between two-timing and averaging 
It is intriguing to investigate further the relation of the precise result (53) with 

the intuitive ideas of averaging. One might also question whether (53) can be 
posed directly without any reference to the Euler equations, even though their 
use in § 5 has been held to a minimum. 

With the choice of the functional form (21) and ( 2 2 )  the original variational 
principle (1) becomes 

6 [L(VUe+EUT, KUe+EUX, U)]e=,-l,dXdT = 0,  (66) ss 
where [ ]e=e-le denotes that, a t  this first step, 6 is still linked to ( X ,  T) through the 
substitution 8 = e-%(X, 2'). The idea of the averaging process is that the 
dependence on E through 0 = E-% is highly oscillatory so that the integrand in 
(66) may be replaced by its mean value. A consistent way to introduce this is to 
use Fourier series. For functions U(0,  X, T, E )  periodic in 8, 

L(Vu0 +€Up, KUe €UX, u) 
is also periodic in 8 and we may introduce its Fourier series 

m 

L(VU@+d&, KUef€UX, U )  = C,+ (C,cosne+S,sinnB). (67) 
n = l  

The coefficients C,, 8, are functionals of U(0, X ,  T, E ) ,  and of O ( X ,  5") through 
v = O,, K = Ox. In  detail 

C, = & J : n ~ ( v ~ , + F ~ T ,  K u ~ + ~ u ~ ,  u)ae, (68) 

(69) n o  lSeT 

1 
and cn = ; J O e n ~  cos node, S, = - Lsinnode, 

(with the same arguments for A). Then, (66) becomes 

Comparing (53) and (68), we see that (53) is in fact 

s/j-codxaT = 0. (71) 

Since (71) is therefore exact, it must be valid to omit the other Fourier terms in 

The basis of the intuitive argument is that, for small e,  the oscillatory terms in 
the integral in (70) contribute very little and may be omitted. Indeed, by 
repeated integration by parts they may be made of smaller order than any power 
of E. If they are then neglected in (70) before taking the variations, we have (71) of 
course. However, if they are retained, they now involve high derivatives in 
0 and U ,  and the usual variational argument to establish the Euler equations 

(70)- 

25 FLM 44 
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will undo the integration by parts and we are back to (70). Moreover, variations 
of 0 in (70) will include terms of order e-l, from the variations of cos ns-lO and 
sinne-W, and these would appear to be the dominant terms. Yet we know 
already that (71) is correct. 

There is then an apparent lack of uniqueness with respect t o  the ordering of the 
terms in (70) with respect to e. The only way out of this disturbing situation 
would be if each of the Fourier terms in (70) is individually stationary, i.e. 

for all n. Surprisingly enough this turns out to be true. 
To prove it, we show that the Euler equations for (72), as well as those for 

(71), areequivalentto (52). ThecoefficientsC,, 8,arcdefinedby (69). Accordingly 
(72) may be written 

The Euler equation for variations in U is 

+ €2 aT (L' cosn (0- :)) + e& (.p cos n ( 8 - p)) = 0. (74) 

This equation may be expanded to 

The expression in brackets is just (51) and the result is proved, 

variations of (73) with respect to 0. The result is 
Again all the information is in the equation for U ,  but we may consider the 

It may be expanded to read 

where P, Q, R refer to the quantities introduced in (31), (32) and superscripts 
Pi, P;, etc., denote the cosine and sine coefficients in their Fourier series. It is 
easily shown from (32), by a continuation of the secular argument, that the 
bracketed terms in (76) vanish separately. For the secular condition is that 
P, Q,  R must be periodic in 8. Hence, these quantities can be expanded in their 
Fourier series m 

P = Po+ C (PicosnO+Pisinn8), etc. (77) 
n=l 
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Substitution of these in (32) gives 

387 

The first of these is the main secular condition noted in (44); the additional ones 
add nothing new in the lowest order. 

7. Optimum form of the average Lagrangian 
The variational principle (57) and its consequences in (58 )  and (59) have been 

justified. We now consider the various manipulations in order to obtain the most 
effective form. The discussion throughout this section will refer to the lowest- 
order approximation V, and the subscript zero will be dropped; the corresponding 
superscript zero will be dropped in (58) and (59). 

In  the first approximation) then, we have 

8 S S Z d X d T  = 0, (79) 

where L = &jr L(~u,, K q ,  u)ae, (80) 

V = O T ,  K = @ x .  

The variation with respect to U(0,  X ,  T) gives 

(81) 
a 
ae - ( vL1+~L2) -L3  = 0; 

the variation with respect to O ( X ,  T )  gives 

a -  a -  
-A,+ - L, = 0. a~ ax 

Equation (81) has the integral 

( vL ,+KL~)&-L  = A ( X , T ) .  (83) 

The aim is to use this integral to evaluate Z as a function of (v, K,  A ) .  
The method is essentially a Hamiltonian version of the equations. The quantity 

U, is eliminated in favour ofaL/aU, just as q is eliminated in favour of a generalized 
momentum p = aL/aa in ordinary dynamics. A new variable Il is defined by 

11 = aL/aU, = vL, + KL,, 

H = u,aqau,-~ = U,(VL,+KL~)-L.  

(84) 

(85)  

and the ‘Hamiltonian’ H(11) U; 0) is defined by 

25-2 
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It is noticed immediately that (83) is the ‘energy integral’ 

B(II, u; 0 )  = A ( X , T ) .  (86) 

The Hamiltonian is a function of n and U ,  but it is a functional of 0 since it 
depends on v = 0, and K = Ox. The semi-colon notation will be used in dis- 
playing the arguments to make this distinction. 

From the transformation defined by (84) and (85), 

U, = aH/arI, 

n, = - aHjaU. and (8 1) becomes 

These are the ‘ Hamiltonian equations ’ to replace ‘ Lagrange’s equation ’ (8 1). 
The variational principle (79) may now be written with 

The independent variations of I1 and U lead to the equations (87) and (88), 
respectively. The independence of the variations of II and U is crucially impor- 
tant. It is an extension of the original form, because in (79), (80) the variation 
SU,, and hence SIT, is determined in terms of SU. Yet, we see that (87) and (88) do 
follow from (89), with SII and SU independent. Thus, we may use the extended 
form. It is exactly the extension used in ordinary mechanics. 

We also saw that the stationary values of Jl and U satisfy the integral 
(86). We may, therefore, take the stationary value for (89) from the class of 
functions II, U that satisfy (86). It is no longer too restrictive to use (86) in its 
entirety, because the dispersion relation cannot be inferred without also using 
the relation of II to U,. The latter is given by (87) and we do not use that. It should 
be emphasized again that this is only possible by the extension that II and U can 
be varied independently in (89). 

Finally, then, we solve (86) in the form 

n = r I ( U , A ; O )  
and (89) may be written 

2 ( A  ; 0} is a functional of 0 and a function of A ; it is a function 9 ( v ,  K, A )  of 
v = OT, K = 0, and A .  

Extension to higher-order systems 

The generalization to cases with more functions ui is carried out similarly. The 
exact averaged Lagrangian is given in (62). As noted in (64) some of the ui may 
be potentials and require that two-timing form. It will suffice to  explain the 
situation for higher-order systems in the case of two functions ui, one of which is a 
potential. They will be denoted by u and $. The Lagrangian is 

L = A(%, us, a, $t, &) 
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with no explicit dependence on 4. To lowest order the variational principle is 
(79) with 

(91) 

V = @ r ,  K = O X ' ,  y=Y, ,  /!?=Y,. (92) 

- 1 27f 
L=,jo L(vu6, K U B ,  u, Y + v@g, P + K@e)d@, 

In  addition to (81), we have the Euler equation from variations in @: 

(93) 
a 
ao - (vL4 + K L ~ )  = 0. 

The absence of explicit dependence on CD in (91) is significant in that (93) inte- 
grates immediately, and provides a second integral to use with (83). The varia- 
tions of Y give a second secular condition 

a -  a -  
-LL,+-LB= 0 
aT ax 

to add to (82). 
The Hamiltonian form is obtained from the transformation 

(94) 

and follow from (91) with 

(99) 
L - 1  = ~ S o 2 " ( n ' u e + I I ~ 0 B - H ) d B .  

Again a crucial extension is that II,, 112, U ,  0 may be varied independently. 

in (98) gives 

This is just the integral obtained from (93). The other one is 

Since CD was in fact absent from L, it is also absent from H and the last equation 

(100) r12 = B ( X ,  T). 

H = A ( X ,  T ) ,  

which (with (100)) can be solved to  give 

In view of (loo), the term 
I T ,  = I l l (  U ,  A ,  B;  0, Y) .  

in (99)) since CD is periodic. Hence, 

E = 9 { A , B ;  0,Y) = - rI ,dU-A,  
27l ' I  

where IT ,  is given by (101). The derivatives of 0, Y appear in 9. 



390 a. B. Whitham 

The required equations are then 

LYA= 0, g B = 0 ,  

a a a a 
aT ax aT ax -Lg+-2g = 0, - "E"y+-dpg = 0. 

Since the additional variable @ was taken to be a potential, it automatically 
brought in a second integral to simplify (99). In more general systems, one might 
expect sums of terms like I l l &  and nz@@ in (99). All the II, will be integrals and 
the terms TI, (Do integrate to zero as in (102). We then have 

II,=B, H = A .  (106) 

Further simplification down t o  integrals of the type in (90) would depend on 
finding further integrals. In all known examples, all the ui except one are poten- 
tials. So there is only one U and n,; the form in (103) applies. Even if eventually 
other types arise, the final simplification is not essential; the method still applies. 

Linear problems 
For linear problems, one need not resort to this transformation to Hamiltonian 
form. Its object is to introduce some restriction on the form of the periodic 
solution into while leaving enough flexibility to apply the variational argu- 
ments. In  linear problems, the Ui are sinusoidal in 8. One can introduce the appro- 
priate forms for them without being overly restrictive, provided the dispersion 
relation is not used. In non-linear problems, the form of the U ,  the dispersion 
relation and the amplitudes are coupled together. These require the more 
ingenious treatment of this section. 

8. Illustrative examples 
(a)  The Klein-Cordon equation 

The Lagrangian is L = +uf - +u; - V(u) ,  

and the lowest-order approximation is 

L = 8 ( V z  - K 2 ) U g  - v( u). 
The transformation (84), (85) to Hamiltonian form is 

= aL/auo = ( ~ ~ - K Z ) U ~  

H = U , ~ L ~ U , - L  = + ( V ~ - K ~ ) U ; +  v(u) 
= ~ ( V 2 - K 2 ) - ' n Z +  v(u). 

The integral H = A is solved as 

n = 2*(V2  - K2)& [ A  - v( a)]*, 
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[ A -  V(U)]idU-A, 
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in agreement with (20). 

and we have 9 = [ ( v ~ - K ~ ) * - ~ ] A .  

From the energy equation, A is proportional to a2, and this result conforms with 
the general result in (12). 

(b )  Linear example 

To illustrate the remarks on linear problems at the end of $7, we do the linear 
Klein-Gordon case directly. We have 

In the linear case, V (  U )  = +U2, the integral in 9 can be evaluated explicitly 

(107) 

We substitute U = a cos 0, 
- 

(108) and deduce L = 2* = t ( v Z - ~ z -  1)aZ. 

The dispersion relation is written in a different form in (107) and (108), but the 
final results are equivalent. In any linear problem, 9 = P(w,  K)a2, and the 
slowly $varying equations are 

(109) dpa CC F(u, K )  = 0, 

a a 
- (Fuaz) + - (FKa2) = 0, aT ax (110) 

a K  aw 
aT ax -+- = 0. 

We suppose (109) is solved in the form w = W(K) .  Then P(W, K )  = 0 is an 
identity and it follows that 

C ( K )  pW( w >  K ,  f ' K (  w 7  K, = '7 

where C ( K )  = W ' ( K )  

is the group velocity. Equations (1 lo),  (1 11)  may then be written 

a K  aK 
,+C(K)- ax = 0, 

wheref(K) = FJW,  K ) .  Equation (112) may be expanded to 

, (& a K )  +f ( K )  -+c- =o.  aT ax 
The second term is zero by (1 13). Finally, therefore, the equations reduce to 

aa2 a a K  a K  
-+-(azC)=O, ZIT ax a T + C ( ~ ) - = o .  ax 
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This final form shows that different choices of F(w,  K )  will lead to the same final 
equations provided that they have the same solution o = W ( K ) .  

( c )  Boussinesq equations for water waves 
In Boussinesq's approximation for long water waves the Lagrangian is 

L = &g-' 29 u2- 49% + im 
where u is the water height and q5 is a velocity potential (see Whitham 19653). 
The notation u for the height is to conform with the general notation in this paper. 
To lowest order, 

L = +V2u$-+gu2- U{y+V@a+$(,8+K@o)2}. 

Introducing the Hamiltonian transformation, as in (95) etc., we have 

jy = rv-2n2 2 1 2  - lK-2U-l {n2+ U(Y+PK))'+ u ( y + $ p 2 ) + & u 2 .  

Since @ is absent from H ,  

Then, solving 
for n,, we have 

n2 = B ( X ,  T ) .  

H = A ( X ,  T) 

= - v f  1 {K-~U-I (B+  UY+ U ~ K ) ~ -  U ( 2 y + , 8 ' ) - - U 2 + S A } ~ d U - A .  
2?T 

This is the result obtained previously (Whitham 1965 b )  with slight changes in 
notation. 

The variational equations are (104), (105). 

(a) Central orbits 

The methods developed here for waves have required both extensions and new 
versions of ideas and techniques in mechanics. It is interesting to return to some 
of the questions in mechanics from this different point of view. A typical problem 
arises in central orbits and the theory of their adiabatic invariants. The theory of 
this paper applies with the simplification that the dependent variables ui are 
functions oft alone. The slow variations are introduced, now, by slow variations 
in time of the central force field. 

If r and q5 are the radius and polar angle, respectively, the Lagrangian for an 
orbit in a force field with potential V(r ,  st) is 

L = &P+ sr2qP- V(r ,  st). 

i: - rd2 + q ( r ,  Et) = 0, The Euler equations are 
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For E = 0, the solution may be written 

r = R(O), 8 = vt, 

$ = yt+ @(4, 
where R and Q are periodic functions of 8 with period 221. In  this unperturbed 
case, Y and y are constant. The period of r in time is 27r/v. In  that period, q5 in- 
creases by 2n-ylv; the orbit is closed if y = v. 

For the perturbed case E $. 0, the solution is generalized t o  the slowly varying 
form 

r = R(O,T), T = et, 19 = e-*O(T), v = OT 

q5 = $+ @(8, T ) ,  $ = e - T ( T ) ,  y = YT. 
To lowest order the Lagrangian is 

L = &v2R; + &R2(y + v Q ~ ) ~  - V(R, T ) .  

The ‘ Hamiltonian transformation’ is 

111 = BL/BR, = v2R0, IT2 = aL/a@O = vR2(y + v @ O ) ,  

H = &v-Zn; + 4v-2R-2n2 2 - y-1 Y b +  V(R, T ) .  

(This ‘Hamiltonian’ differs by the term v-lyn2 from the usual one.) As before, 
ll, and H are integrals as regards the 8 dependence. It is convenient to introduce 
corresponding parameters M(T),  E(T) ,  by 

n2 = VM, 

H = E - y M ,  

so that M and E are the angular momentum and energy, respectively. These are 
solved for II, and II, to give 

I l l  = v(2E -M2RP2- 2V(R, T)}*, r12 = vM. 

The average Lagrangian is 

Therefore 9 = {2E - M2R-2 - 2 V(R, T)}hdR + y M  - E. 
2n 

The variations with respect to 0 and Y give 

d a 
- L g =  0, -9 = 0. 
d T  dT Y 

Hence, (2E - M2Rp2- 2V(R, T)}*dR, 
2n- 

I, = 2ZY = M ,  

are the adiabatic invariants which remain constant for slow changes in the force 
field. The second shows that the angular momentum remains constant, as it must 
in a central force field, The first then determines the slow changes in the energy E. 
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The variations of 9 with respect to E and M give 

SE = vaIl/aE - 1 = 0, diplM = vaIl/aM+ y = 0. 

These determine the frequencies v and y. 
A convenient alternative form is to introduce Il and I2 as parameters in place of 

E and M .  Then 
9= vI1+yI2-E(I1, I.), 

and the variational equations are 

- 0, dI2 -@ = 0, 
n- 

aE 
y = - .  

aE 
y = -  

ar, a 4  
These are the standard results of the theory of adiabatic invariants, but they are 
usually obtained by other methods. A good account is given by Landau & Lifshitz 
(1960). 

For the case of an inverse square force, the potential energy is V = - a(T)/R. 
For this case the integral in 9 can be evaluated explicitly (most simply by con- 
tour integration) and we have 

The adiabatic invariants are 

The frequency equations dipE = 9' = 0 give 

v = y = (-2E)%/a. 

The energy may be expressed in terms of 11, I .  by 

E = -  a2 
2 ( 4 +  I.)2' 

Since the frequencies are equal, the orbit is closed. As regards the general theory, 
the equal frequencies make this a degenerate case. 
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